Solute-solvent intermolecular vibronic coupling as manifested by the molecular near-field effect in resonance hyper-Raman scattering.
نویسندگان
چکیده
Vibronic coupling within the excited electronic manifold of the solute all-trans-β-carotene through the vibrational motions of the solvent cyclohexane is shown to manifest as the "molecular near-field effect," in which the solvent hyper-Raman bands are subject to marked intensity enhancements under the presence of all-trans-β-carotene. The resonance hyper-Raman excitation profiles of the enhanced solvent bands exhibit similar peaks to those of the solute bands in the wavenumber region of 21,700-25,000 cm(-1) (10,850-12,500 cm(-1) in the hyper-Raman exciting wavenumber), where the solute all-trans-β-carotene shows a strong absorption assigned to the 1A(g) → 1B(u) transition. This fact indicates that the solvent hyper-Raman bands gain their intensities through resonances with the electronic states of the solute. The observed excitation profiles are quantitatively analyzed and are successfully accounted for by an extended vibronic theory of resonance hyper-Raman scattering that incorporates the vibronic coupling within the excited electronic manifold of all-trans-β-carotene through the vibrational motions of cyclohexane. It is shown that the major resonance arises from the B-term (vibronic) coupling between the first excited vibrational level (v = 1) of the 1B(u) state and the ground vibrational level (v = 0) of a nearby A(g) state through ungerade vibrational modes of both the solute and the solvent molecules. The inversion symmetry of the solute all-trans-β-carotene is preserved, suggesting the weak perturbative nature of the solute-solvent interaction in the molecular near-field effect. The present study introduces a new concept, "intermolecular vibronic coupling," which may provide an experimentally accessible∕theoretically tractable model for understanding weak solute-solvent interactions in liquid.
منابع مشابه
Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering.
A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-beta-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experiment...
متن کاملMolecular near-field antenna effect in resonance hyper-Raman scattering: intermolecular vibronic intensity borrowing of solvent from solute through dipole-dipole and dipole-quadrupole interactions.
We quantitatively interpret the recently discovered intriguing phenomenon related to resonance Hyper-Raman (HR) scattering. In resonance HR spectra of all-trans-β-carotene (β-carotene) in solution, vibrations of proximate solvent molecules are observed concomitantly with the solute β-carotene HR bands. It has been shown that these solvent bands are subject to marked intensity enhancements by mo...
متن کاملNonresonant hyper-Raman and hyper-Rayleigh scattering in benzene and pyridine
Nonresonant hyper-Raman and hyper-Rayleigh spectra excited at 1064 nm are reported for neat benzene and pyridine. The theory of Herzberg-Teller vibronic coupling in nonresonant and preresonant hyper-Raman scattering is developed. Nonresonant hyper-Raman scattering is shown to be vibronically induced by modes that efficiently couple strongly allowed onephoton and two-photon transitions. A weak a...
متن کاملMode mixing via resonance Raman excitation profiles
Mode mixing plays an essential role in the reorganization of chemical bonds in molecular systems and impurity centers under electronic transition. Up to now there is no practically useful method which allows to determine this important parameter of vibronic interaction. Here a possibility is proposed which bases on the measurement of resonance Raman excitation profiles. The excitation spectrum ...
متن کاملDependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron–Proton Transfer
The rate constants for typical concerted proton-coupled electron transfer (PCET) reactions depend on the vibronic coupling between the diabatic reactant and product states. The form of the vibronic coupling is different for electronically adiabatic and nonadiabatic reactions, which are associated with hydrogen atom transfer (HAT) and electron-proton transfer (EPT) mechanisms, respectively. Most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 134 3 شماره
صفحات -
تاریخ انتشار 2011